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Capturing shock waves in inelastic granular gases
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Abstract

Shock waves in granular gases generated by hitting an obstacle at rest are treated by means of a shock capturing

scheme that approximates the Euler equations of granular gas dynamics with an equation of state (EOS), introduced

by Goldshtein and Shapiro [J. Fluid Mech. 282 (1995) 75–114], that takes into account the inelastic collisions of gran-

ules. We include a sink term in the energy balance to account for dissipation of the granular motion by collisional

inelasticity, proposed by Haff [J. Fluid Mech. 134 (1983) 401–430], and the gravity field added as source terms. We have

computed the approximate solution to a one-dimensional granular gas falling on a plate under the acceleration of grav-

ity until the close-packed limit.
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1. Introduction

Much experimental and theoretical work has been performed to study the fluid properties of granular

gases [1,3,6,7,10,11,14,18]. Several kinetic models have been introduced to explain the complicated physical

behavior of granular media [15]. Continuum models, up to Navier–Stokes order, were derived from kinetic

theory in [11]. Shock waves are one of the difficult features appearing in fluidized granular gases and easily
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observed in laboratory, since typical speeds of sound of some granular gases are measured in cm/s [19].

Hydrodynamical models are the most convenient and efficient ones to describe shock waves [6,8,9,11,13].

In this research work we are interested in simulating shock wave dynamics numerically using the Euler

equations for compressible granular flow described by means of the granular equation of state (EOS) pro-

posed to compute the pressure by Goldshtein and Shapiro [6], that includes both dense gas and inelastic
effects. This granular EOS represents a particle-laden fluid through a volume fraction and its formulation

is simple from the analytical and computational point of view. The granular gas described by this EOS can

be considered, in a simple way, as the mixture of gas and particles, behaving as a gas for small volume frac-

tion. In spite of particles and gas can not separate, this formulation appears to be computationally more

advantageous than the two-phase approach, which would allow particle–gas separation. In the last case

we would need two sets of equations and a mixture law. Further discussion of this issue is outside the scope

of this research work.

We shall use an energy loss term, proportional to T
3
2, where T is the granular temperature [10], that takes

into account the inelastic collisions of particles. We also consider the possible effect of the acceleration of

gravity added as a source terms in both the momentum equation and the energy equation. The above

hydrodynamic model was designed to describe the fluid-like properties of granular flows of a vibrated

bed, and to be able to take into account the physical mechanism responsible for the transformation of

the kinetic energy applied on the vibrating bed into granular temperature.

The main goal of this paper is twofold. We check that the model for inelastic granular gases has the nec-

essary analytical properties to describe the shock wave phenomena by means of a shock capturing scheme.

On the other hand, we propose a simple numerical scheme suitable for the present model, that uses all the
wave structure information, behaves in a stable fashion, propagates discontinuities with correct speed and

approximates the physically consistent solution under the presence of the gravity field and the energy loss

by inelastic collisions.

We study the necessary thermodynamical properties of the granular EOS as the adiabatic exponent, the

Grüneisen coefficient and the fundamental derivative, to ensure a unique solution of the Riemann problem

for this model. We obtain analytical expressions of these variables showing that the nonlinear characteristic

fields are genuinely nonlinear with positive nonlinearity [22].

The paper is organized as follows. In Section 2, we set up the model equations and analyze the thermo-
dynamical variables associated to the EOS relevant for the propagation of acoustic waves. In Section 3, we

describe the algorithm used and we analyze the reflected shock wave generated when a granular gas hits a

solid wall under the acceleration of gravity. In Section 4, we draw our conclusions.
2. Euler equations for compressible granular flows

To simplify the discussion we restrict our analysis in this section to one spatial dimension. The one-

dimensional Euler equations for inelastic granular flow can be written as:
qt þ ðquÞx ¼ 0;

ðquÞt þ P þ ðquÞ2

q

 !
x

¼ qg;

Et þ ðuðE þ PÞÞx ¼ �Hþ qgu;
where q is the granular gas density, u is the velocity, P is the pressure, H is the energy loss term and E is the

total granular energy, E ¼ 1
2
qu2 þ q� being � the specific internal energy per unit of volume. We shall use a

granular equation of state (EOS), introduced by Goldshtein and Shapiro [6], to compute the pressure, that
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reads as follows: let r be the diameter of particles of fixed mass and let e be their restitution coefficient

(0 6 e 6 1). Let m ¼ p
6
qr3 be the volume fraction, with mmax = 0.65 the maximum possible solids volume

per unit volume of gas. Then, we have the following expression for the granular EOS:
P ¼ TqAðqÞ; ð1Þ
where T = (c � 1)� is the granular temperature, c is the ratio of specific heats for the ideal gas case (in this

paper, we use c = 5/3) and A(q) = 1 + 2(1 + e)G(m(q)), where
GðmÞ ¼ m 1� m
mmax

� �4
3
mmax

" #�1

.

The energy loss term H accounts for inelastic collisions. It is described by an extension of the so-called
Haff�s cooling law [10], in the form:
H ¼ 12ffiffiffi
p

p ð1� e2Þ qT
3
2

r
GðmÞ. ð2Þ
For the elastic limit e = 1 this term has no effect.

We can associate to the granular EOS (1) a well-defined thermodynamic speed of sound, cs, from the

expression:
c2s ¼ ðc� 1Þ� AðqÞ þ qA0ðqÞ þ ðc� 1ÞA2ðqÞ
� �

; ð3Þ
where
A0ðqÞ ¼ p
6
r3ð1þ eÞ 1þ 4

3
mmax � 1

� �
m

mmax

� �4
3
mmax

 !
1� m

mmax

� �4
3
mmax

" #�2
and the characteristic speeds: u � cs, u, and u + cs.

For 0 6 m < mmax it is easy to see that c2s > 0 and it is a non negative strictly increasing function of m, such
that limm!mmax

cs ¼ þ1, for constant T. This shows that for volume fractions near mmax the granular gas

becomes less compressible.

Since cs > 0, the system is strictly hyperbolic and the waves are propagated with a uniquely defined finite
speed.

The solution of the Riemann problem for a hyperbolic system is the fundamental ingredient for the de-

sign of a shock capturing numerical scheme. Thus, we need to know that the hyperbolic model for granular

gas described above has the necessary analytical properties to ensure that there is a unique well-defined

standard solution of the Riemann problem. For this purpose we analyze the thermodynamic magnitudes

of the granular EOS relevant for the study of the wave propagation structure.

When heat conduction is neglected as in our case the properties of the shock waves and rarefaction

waves are determined by the adiabatic exponent, cA, the Grüneisen coefficient, C and the fundamental
derivative, G [17,22].

These thermodynamic variables are defined as, cA :¼ �V
P

oP
oV

��
S
, C :¼ V oP

o�

��
V
and G :¼ 1

2
V 2

cAP
o2P
oV 2

���
S
, where

V ¼ 1
q.

We obtain, after straightforward calculations, the following expressions for the granular EOS of cA, C
and G, in terms of the volume fraction,
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cA ¼c 1þ 2ð1þ eÞGðmÞð Þ þ 2ð1þ eÞGðmÞ
1þ 2ð1þ eÞGðmÞ

4
3
mmax

m
mmax

� �4
3
mmax

1� m
mmax

� �4
3
mmax

2
64

3
75; ð4Þ

C ¼ðc� 1Þð1þ 2ð1þ eÞGðmÞÞ; ð5Þ

G ¼ 1

2
1þ cA þ m

cA

ocA
om

����
S

	 

; ð6Þ
where
ocA
om

����
S

¼ 2ð1þ eÞG0ðmÞcþ
2ð1þ eÞ 4

3

� �2ðmmaxÞ3 m
mmax

� �4
3
mmax

þ m
mmax

	 


1þ2ð1þ eÞGðmÞ½ � 1� m
mmax

� �4
3
mmax

� �3
þ

4
3
mmax

m
mmax

� �4
3
mmax

1� m
mmax

� �4
3
mmax

2
64

3
75 2ð1þ eÞG0ðmÞ

1þ2ð1þ eÞGðmÞ½ �2
.

In Fig. 1, we display the adiabatic exponent and the fundamental derivative as functions of the volume

fraction in the interval [0,0.55], for two different values of the restitution coefficient e = 0.9, 0.2, using 100

points. The profiles of these thermodynamic quantities are non negative strictly increasing functions of the

volume fraction, tending to infinity when m tends to mmax and their minimum values are the corresponding

ones for the ideal gas case.
Since the fundamental derivative is strictly positive and the granular EOS satisfies the Menikoff–Plohr

‘‘strong condition’’ [17, p. 95] C = PV/�, we conclude that the Riemann problem has a unique standard

solution and the nonlinear characteristic fields are genuinely nonlinear with a positive nonlinearity [22].

Furthermore, since G > 1, the isentropes in the P–q plane are convex, and, since C > 0 the isentropes do

not cross each other in the P–V plane. Thus, the ‘‘exact’’ solution of the Riemann problem can be approx-

imated in a simpler way. This means that the solution of the Riemann problem for the granular EOS has an
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analogous structure to the one for ideal gas dynamics but the evolution of shock waves and their interac-

tions are more complex since the three fundamental thermodynamic quantities studied above are noncon-

stant functions of the volume fraction.

We can recover the ideal gas EOS by putting r = 0. Hence, the thermodynamic quantities are constant

with respect to the density q and their values are cA = c, C = c � 1 and G ¼ 1
2
ð1þ cÞ. When volume fraction

is very small the granular gas resembles an ideal gas, since cA, C and G, are close to the minimum values c,
c � 1 and 1

2
ð1þ cÞ, respectively.

In addition to the qualitative properties of the granular EOS discussed above, we can assert that the

main difference between this model for inelastic granular gas and the Euler equations for ideal gas is the

presence of the energy loss term. The kinetic energy loss by inelastic collisions is transformed in granular

temperature. Thus, total energy is not conserved and this feature makes the physics of granular media more

complex [10,15].
3. Numerical experiment

We express in short an initial value problem for the one-dimensional hyperbolic system of conservation
laws describing granular flows as
ut þ ðfðuÞÞx ¼ SðuÞ; ð7Þ

together with the initial data
uðx; 0Þ :¼ u0ðxÞ; ð8Þ

where f(u) is the flux vector and S(u) is the vector of source terms.

We consider the computational grid: xj = jh (h is the spatial step) tn = nDt, the time discretization, (Dt is the
time step), I j ¼ ½xj�1

2
; xj þ 1

2
� is the spatial cell, where xjþ1

2
¼ xj þ h

2
is the cell interface and Cn

j ¼ ½xj�1
2
; xjþ1

2
��

½tn; tnþ1� is the computational cell. Let unj be an approximation of the mean value in Ij,
1
h

R x
jþ1

2
x
j�1

2

uðx; tnÞdx,
of the exact solution u(x,tn) of the initial value problems (7) and (8), obtained from a finite volume scheme

in conservation form:
unþ1
j ¼ unj �

Dt
h
ð~fjþ1

2
� ~fj�1

2
Þ þ DtSðunj Þ; ð9Þ
where the numerical flux, ~f, is a function of k + l variables
~fjþ1
2
¼ ~fðunj�kþ1; . . . ; u

n
jþlÞ; ð10Þ
which is consistent with the flux of Eq. (7), ~fðu; . . . ; uÞ ¼ fðuÞ.
From the classic theorem of Lax and Wendroff we know that the limit solution of a consistent scheme in

conservation form is a weak solution of the hyperbolic PDE system. Thus, a consistent scheme in conser-

vation form is the main ingredient to design shock capturing schemes, since these schemes propagate dis-

continuities at the correct speed. In addition, we require a numerical scheme that provides the appropriate
viscosity to be stable and to develop the physically consistent features of the shock wave phenomena. In

order to construct an explicit scheme in conservation form we need a flux formula that approximates

the numerical flux ~f at each cell interface.

In this paper, we use Marquina Flux Formula, (MFF) [4], for the design of our numerical scheme.

MFF uses the information related to the wave structure through the spectral decomposition of the Jac-

obians of the flux computed at both neighboring cells. This flux formula computes the numerical flux by

performing a characteristic field decomposition at ul and ur, using Godunov�s method for non-transonic
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wavefields and using local Lax–Friedrichs method for transonic ones prescribing the local viscosity as

the maximum of the absolute values of the local characteristic speeds at neighboring cells (see [4] for

details).

The most advantageous features of the MFF to resolve successfully the computations of strong shocks in

granular flow are that it behaves robustly for low densities [4] and that can be applied to nonhomogeneous
fluxes [5,21].

Higher order of accuracy is obtained by applying a reconstruction procedure on local variables or local

fluxes extrapolating them to the left and right states of the cell interface following the so-called Shu–Osher

‘‘flux formulation’’, [20]. In this paper, we have used the PHM method [16] and we integrate in time using

the third-order accurate Shu–Osher TVD Runge–Kutta time-stepping procedure [20]. The resulting scheme

is stable under a Courant–Friedrichs–Lewy (CFL) restriction of the form k ¼ Dt
h 6 k0, where k0 is propor-

tional to 1
maxp;ujkpðuÞj as usual.

The chosen RK procedure remains stable under the presence of the source terms, imposing no reduc-

tion of the time step. The source terms, including the gravitational field, are not stiff since they vary

smoothly using the stepsize obtained from the CFL restriction. On the other hand, the gravitational

term increases the absolute value of the velocity and, hence the CFL restriction of the hyperbolic part

of the numerical scheme enforces a reduction of the time stepsize in an automatic way, ensuring
stability.

We use ‘‘ghost cells’’ to implement boundary conditions. The values of conserved variables on these cells

are computed by linear extrapolation of the corresponding values in the domain for the outflow/inflow

boundary conditions. Reflective boundary conditions are computed using the same procedure although

changing the sign of the momentum in the direction normal to the boundary.

In our calculations we fix the value of the diameter of the particles to be r = 0.1. The role of r in the

continuous model is just a scale factor that relates the volume fraction and the density appearing in the Euler

equations.
3.1. Gravity acceleration of granular gas hitting a solid wall until close-packed limit

We consider a one-dimensional domain of length 10 cm, [0,10], filled with a granular gas with a constant

volume fraction m = 0.018, restitution coefficient e = 0.97 and constant speed of sound of 9 cm/s. We con-

sider a solid wall at the right end (reflective boundary conditions are applied), and the action of the gravity

field oriented from left to right. The initial velocity is constant through the domain and is taken to be 18 cm/s.

The initial data were derived from the ones appearing in [19]. A shock wave is formed immediately at the
solid wall and propagates to the left. The granular gas starts to cluster at the wall until reaches the close-

packed limit. The initial data computed from the above quantities are (q,v,P) = (34.37,18,1589.26). We use

g = 980 cm/s2.

We have performed our computation using 1000 grid points, until time 0.23 with a Courant–Friedrichs–

Lewy (CFL) factor of 0.5 using MFF scheme with the third-order accurate PHM reconstruction. In Fig. 2

we display the volume fraction, the granular temperature, the pressure and the Mach number at time 0.23.

We observe the rarefaction wave generated by the energy dissipation term where granular temperature be-

comes close to zero at the wall reaching a volume fraction of 0.649472.
The post-shock oscillations observed in the pressure profile are due to the high order accurate procedure

used and the increase of the Mach number of the incoming granular gas.

In Table 1, we display the first-order approximations of the shock wave location for this experi-

ment at times 0.14, 0.16 and 0.18 under mesh refinement. The observed convergence shows numerical

evidence that the presence of source terms does not affect the correct speed and position of the shock

wave.
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scheme. Top left: volume fraction; top right: granular temperature; bottom left: pressure, bottom right: Mach number.
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Our method behaves stable and accurate for nonzero velocity initial data using central values to compute

the source terms (gravity field).

The accuracy and stability of our method for static initial data in comparison with standard well-

balanced schemes [2,12] applied to the present model is a work in progress.
Table 1

Abscissas of shock wave location at different times

Time Position

N = 200 N = 400 N = 800 N = 1600

0.14 7.8250 7.8375 7.8312 7.8343

0.16 7.4250 7.4375 7.4312 7.4406

0.18 7.0250 7.0375 7.0562 7.0593
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4. Conclusions

In this research work, we have shown that Euler equations together with an energy loss term and an

equation of state representing the fluidized granular gas until the close-packed limit, have the necessary

analytical properties to describe shock wave phenomena by means of a shock capturing scheme. We have
used a standard numerical scheme, based on an approximate Riemann solver to compute the approximate

solution to a one-dimensional granular gas falling on a plate under the acceleration of gravity until close-

packed limit. Further numerical experiments on shock wave propagation in inelastic granular gases are the

object of future work.
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